Widespread transcription at activity-dependent neuronal enhancers

Martin Hemberg

UC Berkeley February 28, 2012

Textbook view of gene regulation

Transcription Factors (**TF**s) bind to DNA motifs

Post-translational modifications of histone tails correlate with function

- ~100 k loci or 1% accessible
- H3K4Me1 open chromatin
- H3K4Me3 active genes

(ENCODE, 2007)

Histone

Histone tail

Enhancers are distal TF binding sites

CBP

Enhancer

CBP

RNAPI

CBP

- No universal _ sequence signature
- Up to 1Mb away
- Marked by
 - CBP (Creb Binding Protein)
 - H3K4me1 flanking
 - H3K4me3 absent
- Cell-type specific

ENCODE, 2007 Heintzman et al, 2007 Roh et al, 2005 Visel et al, 2009

External stimuli change synapses

Hubel & Wiesel, 1970's

Changes in synapses are driven by changes in gene expression

An experimental system for genome-wide study of activity dependent gene expression

neuronal activation via potassium chloride (KCI) depolarization

mouse cortical neurons

An experimental system for genome-wide study of activity dependent gene expression

Jesse Gray Tae-Kyung Kim Greenberg Lab

Chromatin immunoprecipitation and sequencing (**ChIP-Seq**) finds protein binding sites *in vivo*

Where are activity-dependent enhancers located?

- **CBP** binding
- H3K4me1 flanking
- H3K4 me3 absent

Activity-regulated enhancer at the Arc-locus has inducible CBP binding

7 kb

Distal CBP peaks have high levels of H3K4me1 and low levels of H3K4me3

Identifying 28,000 CBP binding sites

 Regions that have significantly more CBP than background

Aligning CBP peaks to calculate binding profiles

Aligning CBP peaks to calculate binding profiles

Aligning CBP peaks to calculate H3K4me1 binding profiles

Enhancers have high levels of H3K4me1 and low levels of H3K4me3

We identified 12k activity-dependent enhancers throughout the genome

- **CBP** binding
- H3K4me1 flanking
- H3K4me3 absent
 - -~5000 extragenic enhancers
 - ~7000 intragenic enhancers

8/8 tested activity-dependent enhancers were validated using a luciferase assay

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
 - -~5000 extragenic enhancers
 - ~7000 intragenic enhancers

What mechanisms can we identify for enhancers in gene regulation?

Accessible chromatin _____

Enhancer H3K4me1

What motifs are enriched at enhancers?

- ~2000 words of known regulatory significance
- Calculate enrichment relative to flanks

~100 enriched motifs are found

Word	Enrichment	Known TF
TGASTCA	4.74	Fos/Jun
TGACGTCA	6.41	Creb
CTAWWWATA	3.34	Srf
TCGTG	1.56	Npas4
CTGCCAAA	3.34	?

SRF and CREB binding at Fos enhancers

e2

e3 * 🔨

e4

fos transcription start site (TSS)

Is CBP binding determined by other TFs?

- Combinatorial regulation
 - Mechanisms unclear
 - CBP bottleneck?

CBP levels determined by relative affinity of TF complexes

CBP levels determined by relative affinity of TF complexes

What is the role of CBP at enhancers?

- Is CBP determined by TF combinations? YES
- Does RNAPII bind at enhancers?

RNAPII is recruited to CBP binding sites at the *fos* locus

RNAPII is recruited at all enhancers

RNAPII is recruited at all enhancers

What is the function of RNAPII at enhancers?

- Is CBP determined by TF combinations? YES
- Does RNAPII bind at enhancers?
- Are transcripts produced at enhancers?

RNA-Seq reveals which parts of the genome are transcribed

(Wang et al, 2009)

polyA tail is added to messenger RNAs (mRNAs)

- Increases stability
- Allows transport out of nucleus

Transcription of mRNA at the fos locus

20 kb
Transcription of total RNA at the fos locus

Transcription at enhancers is activitydependent

What are the properties of eRNAs?

eRNAs are induced by activity

eRNAs are not polyadenylated

Properties of enhancer RNAs

- Inducible
 - Low expression
 - ~1.5 kb
- Bidirectional
- No polyA-tail
- Not protein-coding

Intragenic enhancers

- ~7,000 enhancers overlapping introns
 - H3K4me1, but no
 H3K4me3

Intragenic enhancers are also transcribed

- ~7,000 enhancers overlapping introns
 - No signal detectable on sense strand
 - Significant anti-sense transcription

How abundant are eRNAs compared to mRNAs?

- Identify all transcripts in the genome
 - Wavelet-based algorithm for *de novo* detection of transcribed regions accounts for 99.8% of reads
 - mRNAs and annotated ncRNAs represent X%
 - eRNAs represent Y%
 - 1 in 10,000 reads is an eRNA read
 - MRNAs ~100 times more abundant

Why do eRNAs have such low abundance?

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

A simple model of transcription

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

dM		$P_M k$	M
dt	_	L_M	$\overline{\tau}_{M}$
dE		$P_E k$	E
dt		L_E	$\overline{\tau_E}$

- M mRNA
- E eRNA
- P polymerase levels
- k elongation rate
- L length of transcript
- tau RNA half life

Half life of eRNAs relative to mRNAs

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

dM _	$P_M k$	M
dt –	$\overline{L_M}$	$\overline{\tau}_M$
dE _	$P_E k$	E
dt	$\overline{L_E}$	$\overline{\tau_E}$
$\frac{\tau_E}{I} = \frac{E^*}{M^*} \frac{L}{L}$	$\frac{P_{E}}{P_{M}}$	
$\tau_M = M^* L$	$_{M} P_{E}$	

- *M* mRNA
- E eRNA
- P polymerase levels
- k elongation rate
- L length of transcript
- tau RNA half life

eRNAs half life is approximately half an hour

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

$\frac{dM}{dt} = \frac{P_M k}{L_M} - \frac{M}{\tau_M}$ $\frac{dE}{dt} = \frac{P_E k}{L_E} - \frac{E}{\tau_E}$	<i>M</i> – mRNA <i>E</i> – eRNA <i>P</i> – polymerase levels <i>k</i> – elongation rate <i>L</i> – length of transcript <i>tau</i> – RNA half life
$\frac{\tau_E}{\tau_M} = \frac{E^*}{M^*} \frac{L_E}{L_M} \frac{P_M}{P_E}$	
$\tau_E \approx 10^{-2} \times \frac{1.5}{30} \times 5 \times \tau_M \approx 4$	$\times 10^{-2} \times 600 \text{min} = 24 \text{m}$

Enhancers recruit RNAPII and produce transcripts, but does it depend on promoter?

- Is CBP determined by TF combinations? YES
- Does RNAPII bind at enhancers? YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent?

eRNA induction is correlated with induction of nearby mRNAs

Deletion of the Arc-promoter

RNAPII levels are unchanged at the enhancer in the mutant before and after KCI

Enhancers bind RNAPII independently, does the transcription depend on the promoter?

- Is CBP determined by TF combinations? YES
- Does RNAPII bind at enhancers? YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent? YES
- Is eRNA production independent?

Transcription at the Fos and Arc enhancers

arc enhancer

No transcription at Arc enhancer in mutant

Enhancers bind RNAPII independently, but the transcription is promoter-dependent

- Is CBP determined by TF combinations? YES
- Does RNAPII bind at enhancers? YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent? YES
- Is eRNA production independent? NO

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

$$\frac{dP_M}{dt} = k_p + Nk_ec - \frac{P_M}{\tau}$$

- P polymerase levels
- k_{p} binding rate at promoter
- k_{a} binding rate at enhancer
- *N* number of enhancers
- c contact probability
- tau RNA half life

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

$$\frac{dP_M}{dt} = k_p + Nk_ec - \frac{P_M}{\tau}$$
$$P_M(t) = (k_p + Nk_ec)(1 - e^{-t/\tau})$$

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

$$\frac{dP_M}{dt} = k_p + Nk_ec - \frac{P_M}{\tau} + \sigma\sqrt{P_M(t)}\xi(t)$$

 \rightarrow Variance reduced by (1 + Nc)

What is the function of eRNAs?

Science is always wrong. It never solves a problem without creating ten more. -George Bernard Shaw

- Noise
- Establish histone marks
- Transcript has function

eRNAs have been found in other cell types

doi:10.1038/nature09033

ARTICLES

nature

Widespread transcription at neuronal activity-regulated enhancers

Tae-Kyung Kim¹*†, Martin Hemberg²*, Jesse M. Gray¹*, Allen M. Costa¹, Daniel M. Bear¹, Jing Wu³, David A. Harmin^{1,4}, Mike Laptewicz¹, Kellie Barbara-Haley⁵, Scott Kuersten⁶, Eirene Markenscoff-Papadimitriou¹†, Dietmar Kuhl⁷, Haruhiko Bito⁸, Paul F. Worley³, Gabriel Kreiman² & Michael E. Greenberg¹

Histone H3K27ac separates active from poised enhancers and predicts developmental state

Menno P. Creyghton^{a,1}, Albert W. Cheng^{a,b,1}, G. Grant Welstead^a, Tristan Kooistra^{c,d}, Bryce W. Carey^{a,e}, Eveline J. Steine^{a,e}, Jacob Hanna^a, Michael A. Lodato^{a,e}, Garrett M. Frampton^{a,e}, Phillip A. Sharp^{d,e}, Laurie A. Boyer^e, Richard A. Young^{a,e}, and Rudolf Jaenisch^{a,e,2}

OPEN O ACCESS Freely available online

PLOS BIOLOGY

A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

Francesca De Santa^{1,9}, Iros Barozzi^{1,9}, Flore Mietton^{1,9}, Serena Ghisletti¹, Sara Polletti¹, Betsabeh Khoramian Tusi¹, Heiko Muller¹, Jiannis Ragoussis², Chia-Lin Wei³, Gioacchino Natoli¹*

LETTER

doi:10.1038/nature09692

A unique chromatin signature uncovers early developmental enhancers in humans

Alvaro Rada-Iglesias¹, Ruchi Bajpai¹, Tomek Swigut¹, Samantha A. Brugmann¹, Ryan A. Flynn¹ & Joanna Wysocka^{1,2}

Summary

- Identified ~12k activity-dependent enhancers
- Discovered and quantified novel mechanisms
 - Identified enriched motifs
 - Combinatorial affinity for CBP
 - Recruitment of RNAPII at enhancers
 - Transcription at enhancers
 - Properties of eRNA
 - Interaction with promoter necessary

And now something completely different....

Stochastic models of gene regulatory networks

- mRNAs often <10 copies per cell
- Describe using Master Equation (ME)

- ME very difficult to solve, use Monte Carlo

Stochastic models of gene regulatory networks

- mRNAs often <10 copies per cell
- Describe using Master Equation (ME)

- ME very difficult to solve, use Monte Carlo

- How long do we need to run MC?
 - DCFTP-SSA **proven** to find stationary distribution
 - Provides certainty when using MC

Stochastic models of gene regulatory networks

- mRNAs often <10 copies per cell
- Describe using Master Equation (ME)

- ME very difficult to solve, use Monte Carlo

- How long do we need to run MC?
 - DCFTP-SSA **proven** to find stationary distribution
 - Provides certainty when using MC
- Mixture model approach for analytical solutions and fits to experimental data

Assembly of viral capsids

• Atomic-structure, coarse grain based on rigidity

Assembly of viral capsids

- Atomic-structure, coarse grain based on rigidity
- Oligomer association and dissociation rates
 - Association restricted by diffusion
 - Dissociation escape from multi-dimensional well

Assembly of viral capsids

- Atomic-structure, coarse grain based on rigidity
- Oligomer association and dissociation rates

- Association restricted by diffusion

- Dissociation escape from multi-dimensional well
- Sample assembly paths

Assembly of viral capsids

- Atomic-structure, coarse grain based on rigidity
- Oligomer association and dissociation rates

- Association restricted by diffusion

- Dissociation escape from multi-dimensional well
- Sample assembly paths

Future Work: Organizing principles of the genome

 Use genome-wide data to develop systems biology and biophysical type mathematical models of gene expression

Can biophysical models improve our understanding of TF binding and transcription?

- Use ChIP-Seq to test and compare biophysical models of TF binding
- Use RNA-Seq and synthetic biology approach to develop quantitative model of enhancer effect on expression
- Understand to what extent the biophysical properties affect transcription
 - DNA opening
 - DNA looping

Promoter

Can we predict the structure of novel noncoding RNAs?

- Large number of non-coding RNAs discovered
- High-throughput experiments to probe structure
 - Sampling the folding and contact probability

Can models of stochastic gene expression be extended to entire transcriptome?

- Extend Poisson-Jacobi model combine with thermodynamic models
 - Develop MCMC methods
 - Develop robustness analyses
- Apply to single-cell RNA-Seq and FACS data

- Global view of noise in gene expression

Acknowledgements

- Gabriel Kreiman
- Jesse Gray
- Tae-Kyung Kim
- Michael Greenberg
- Mauricio Barahona

Thank You

CBP binds in an activity regulated manner to ~28,000 sites throughout the genome

Aligning CBP peaks to calculate H3K4me1 and H3K4me3 binding profiles

RNA-Seq reveals which parts of the genome are transcribed

- Fragment
- RNA \rightarrow cDNA
- 35 bp reads mapped to genome
 - Before and after KCI
 - Total RNA and polyA+

RNAPII binds at activity-dependent enhancers

Identifying regions with larger than expected number of ChIP-Seq reads

False Detection Rate (FDR) determine threshold

Use False Detection Ratio (FDR) to correct for multiple hypotheses

- $Z_i =$ #ChIP reads #input reads in window *i*
- ~1 read/100 bp

- Assume #reads in window $P(k) = \lambda^k \exp(-\lambda)/k!$

Difference between two Poisson random variables

•
$$Z_i \sim \text{Skellam}(z, \lambda_1, \lambda_2)$$

$$p(x) = e^{-(\lambda_1 + \lambda_2)} (\lambda_1 / \lambda_2)^{x/2} I_x (2\sqrt{\lambda_1 \lambda_2})$$

Millions of windows need to be tested

-FDR - expected fraction of false positives

Can we learn more about enhancers by comparing their locations in multiple species?

- Conservation of the genomic context of enhancers
- Evolutionary trajectories of enhancers and promoters

What is the structure of non-coding RNAs?

- Many classes of novel RNAs
- Structure \rightarrow function
 - Structural motifs
 - Families of ncRNAs

.....ACGUCCAAAUUCCCUAGGCUCAAGGCAUUCGAUCGGGAUUAUA.....

Our understanding of gene expression is qualitative

Expression = f(TF1, TF2, ...; Motif1, Motif2, ...)

Conjectured order of events for eRNA

