Models of distal enhancers of inducible gene expression

Martin Hemberg

Channing Division of Network Medicine November 30, 2012

Synapses change in response to external environmental stimuli

Activity dependent gene expression triggered by influx of Calcium ions

Hubel & Wiesel, 1970's

Mouse genome has ~3 billion bps

• ~25,000 genes

– ~2% of DNA

Transcription Factors (TFs) bind to DNA

Transcription factors bind at promoter to recruit RNA Polymerase II (**RNAPII**)

• ~25,000 genes

Enhancers are distal regulatory sequences

Enhancers characterized by CBP binding

The mechanism by which enhancers increase expression are poorly understood

Cultured mouse cortical neurons for genome-wide study of activity dependent gene expression

neuronal activation via potassium chloride (KCI) depolarization

mouse cortical neurons

Genome-wide data obtained using highthroughput sequencing

mouse cortical neurons

KCI	+ KCl
ChIP-Seq RNA-Seq	ChIP-Seq RNA-Seq

Jesse Gray Tae-Kyung Kim Greenberg Lab Chromatin immunoprecipitation and sequencing (**ChIP-Seq**) finds protein binding sites *in vivo*

- Short reads mapped to reference genome
- #reads ~ binding
- ~10⁶ reads
- Unbiased

Inducible CBP binding at enhancers

Peak-calling algorithm identifies ~28,000 CBP binding sites in two replicates

Align CBP peaks to obtain binding profiles

Align CBP peaks to obtain binding profiles

Average profile of CBP binding

Histones prevent transcription factors from binding to DNA

(ENCODE, 2007)

Only 1% of the genome is accessible to TFs Histone Open chromatin

(ENCODE, 2007)

A combination of CBP and histone modifications identifies putative enhancers

- **CBP** binding
- H3K4me1 flanking
- H3K4me3 absent
 - Many unannotated promoters in the genome

Distal CBP peaks have high levels of H3K4me1 and low levels of H3K4me3

We identified ~12,000 activity-dependent enhancers throughout the genome

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3

What TFs bind to enhancers?

? TCGACGTAGCTAGCATGATCGATAGATC

H3K4me1

 CBP -CREB Binding Protein

->50 partners

~100 enriched motifs at enhancers

TCGACGTAGCTAGCATGATCGATAGATC

Enhancer H3K4me1

Protein

CREB Binding

->50 partners

CBP -

TCAGGCTGATGACGTCAAACCGTCGTTA ACCTTTTGACGTCAAATTTACGCTAGTAT• TCGACGTAGCTAGCATGATCGATAGATC CGTGACGTCAGTGCTCGTAAATCATAAG

Enrichment of the CRE motif

Motifs for several known TFs were identified

Word	Enrichment	Known TF
TGASTCA	4.74	Fos/Jun
TGACGTCA	6.41	Creb
CTAWWWATA	3.34	Srf
TCGTG	1.56	Npas4
CTGCCAAA	3.34	?

Several enhancers at the fos locus

SRF and CREB binding at fos enhancers

e2

fos transcription start site (TSS)

eЗ

e4

Is CBP binding determined by a combination of TFs?

- Enriched for ~100 sequence motifs
- ChIP-seq reads predicted by sequence

CBP affinity = $\frac{\text{\#peaks with CBP}}{\text{\#peaks without CBP}}$

Tfs have different affinities for CBP binding

Synergistic effects for combinations of TFs

Combinatorial code determines RNAPII levels at promoters and CBP at enhancers

What is the function of CBP at enhancers?

- Enriched for ~100 sequence motifs
- CBP binding determined by other TFs

RNAPII is recruited to CBP binding sites at the *fos* locus

20 kb

RNAPII is recruited at enhancers

RNAPII is recruited at enhancers

RNAPII is correlated with CBP

What is the function of RNAPII at enhancers?

- Enriched for ~100 sequence motifs
- ChIP-seq reads predicted by sequence
- CBP binding determined by other TFs
- CBP recruits RNAPII

RNA-Seq finds transcribed parts of the genome

- Short reads mapped to reference genome
- ~5x10⁶ reads
- #reads ~ RNA

(Wang et al, 2009)

Transcription of total RNA at the fos locus

Transcription at enhancers is activitydependent

Enhancer RNAs (eRNAs) novel species

 mRNA, rRNA, tRNA, miRNA, snRNA, snoRNA, siRNA, piRNA, IncRNA, ... ?

eRNAs are induced by activity

- Inducible, 2-fold
- ~1 kb
- Bidirectional

eRNAs are 100-fold lower than mRNAs

Forward strand, un
Forward strand, Kcl
Reverse strand, un
Reverse strand, Kcl

- Inducible, 2-fold
- ~1 kb
- Bidirectional
- 1 in 10k reads eRNA

- Not at all CBP peaks

Not protein-coding

Why do eRNAs have such low abundance?

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

Half life of eRNAs relative to mRNAs

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

eRNAs half life is less than half an hour

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

$$\frac{\tau_E}{\tau_M} = \frac{E^*}{M^*} \frac{L_E}{L_M} \frac{P_M}{P_E}$$

 $\tau_E \sim 10^{-2} \times 1 \times 2 \times \tau_M \sim 2 \times 10^{-2} \times 600 \text{min} = 12 \text{min}$

Estimate consistent with experiments

- eRNA production much slower than mRNA
- eRNA decay much faster than mRNA

 $\frac{\tau_E}{\tau_M} = \frac{E^*}{M^*} \frac{L_E}{L_M} \frac{P_M}{P_E}$

Finally we measured the stability of these transcripts using an actinomycinD chase. In comparison to both the mRNAs generated by the associated protein-coding genes and some known lncRNAs (like Xist and Neat), the upstream non-coding transcripts were very unstable, being reduced by 80% to 90% after a 30 min actinomycinD treatment (indicating a half-life lower than 7.5 min) (Figure 3D and Figure S3). High instability of a subset of lncRNAs both in yeast and mammals mainly depends on degradation by the nuclear exosome [39,40] and often results in the generation of more stable short RNA products [41], which in principle might be responsible for downstream functional effects.

 $\tau_E \sim 10^{-2} \times 1 \times 2 \times \tau_M \sim 2 \times 10^{-2} \times 600 \text{min} = 12 \text{min}$

A quantitative model of eRNA levels as a function of distance from enhancer center

Forward strand, un

Forward strand, Kcl

Reverse strand, un

Reverse strand, Kcl

RNAPII binds and falls of at a constant rate k **RNAPII** Λ Х Ó

eRNA production proportional to RNAPII k RNAPII RNAPII Ó

Х

eRNA production proportional to RNAPII k RNAPII **RNA** degradation RNAPII X Ó ACGUUUGUACCUAGCUAGCUU 5' 3'

eRNA levels can be accurately predicted

Excellent fit for eRNA after KCI without free parameters

Properties of activity-dependent enhancers

- Enriched for ~100 sequence motifs
- ChIP-seq reads predicted by sequence
- CBP binding determined by other TFs
- CBP recruits RNAPII
- RNAPII synthesizes eRNAs
 - eRNAs are rapidly degraded

What is the function of RNAPII at enhancers?

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

Science is always wrong. It never solves a problem without creating ten more. -George Bernard Shaw

Recruitment of RNAPII at the promoter

- Transcribe eRNAs
- Speed up recruitment of RNAPII at promoter

RNAPII recruitment rate

- = [promoter rate]
 - + N*[contact probability]*[enhancer rate]

Steady state level of RNAPII is increased

Rise time is reduced

 Speed up recruitment of RNAPII at promoter

Significant speed-up with ~5 enhancers

Enhancers may reduce the noise in RNAPII

- Speed up recruitment of RNAPII at promoter
- Reduce noise

RNAPII recruitment rate = [promoter rate] + N*[contact probability]*[enhancer rate]

Reduction of noise proportional to the number of enhancers

- Speed up recruitment of RNAPII at promoter
- Reduce noise

RNAPII recruitment rate = [promoter rate] + N*[contact probability]*[enhancer rate]

 $\frac{\text{Variance strong promoter}}{\text{Variance weak promoter with enhancers}} = \frac{\text{Var}[(1+Nc)k]}{\text{Var}[k] + N\text{Var}[ck]} = \frac{(1+Nc)^2 \text{Var}[k]}{(1+Nc^2) \text{Var}[k]} \sim N$

~50% reduction of noise with ~5 enhancers

- Speed up recruitment of RNAPII at promoter
- Reduce noise

Variance strong promoter

Do eRNAs enhance gene expression?

Luciferase construct to test enhancer function

Do eRNAs enhance gene expression?

- Luciferase construct to test enhancer function
 - Narp gene

RNAPII induction is weakly correlated with enhancer strength $\rho = 0.50$

eRNA induction is strongly correlated with enhancer strength $\rho = 0.739$

Is eRNA induction correlated with mRNA induction in vivo?

Normalized induction index to compare induction of RNAPII and transcription

eRNA induction is correlated with induction of nearby mRNAs

Do eRNAs depend on mRNAs?

Knock-out experiment of the arc-promoter

Are eRNAs independent of the promoter?

RNAPII increases 5-fold in both WT and KO

eRNAs are not present in KO

Summary

- Identified ~12k activity-dependent enhancers
- Discovered and quantified novel mechanisms

Identified enriched motifs and bound TFs

Summary

- Identified ~12k activity-dependent enhancers
- Discovered and quantified novel mechanisms
 - Identified enriched motifs and bound TFs
 - Combinatorial code for CBP affinity
 - Recruitment of RNAPII at enhancers
 - Faster recruitment to promoter
 - Reduce noise
 - Transcription at enhancers
 - Properties of eRNA
 - Model of RNAPII and eRNA levels
 - Interaction with promoter necessary

Widespread transcription at neuronal activity-regulated enhancers

Tae-Kyung Kim¹*†, Martin Hemberg²*, Jesse M. Gray¹*, Allen M. Costa¹, Daniel M. Bear¹, Jing Wu³, David A. Harmin^{1,4}, Mike Laptewicz¹, Kellie Barbara-Haley⁵, Scott Kuersten⁶, Eirene Markenscoff-Papadimitriou¹†, Dietmar Kuhl⁷, Haruhiko Bito⁸, Paul F. Worley³, Gabriel Kreiman² & Michael E. Greenberg¹

eRNAs have been found in other cell types

doi:10.1038/nature09033

ARTICLES

nature

Widespread transcription at neuronal activity-regulated enhancers

Tae-Kyung Kim¹*†, Martin Hemberg²*, Jesse M. Gray¹*, Allen M. Costa¹, Daniel M. Bear¹, Jing Wu³, David A. Harmin^{1,4}, Mike Laptewicz¹, Kellie Barbara-Haley⁵, Scott Kuersten⁶, Eirene Markenscoff-Papadimitriou¹†, Dietmar Kuhl⁷, Haruhiko Bito⁸, Paul F. Worley³, Gabriel Kreiman² & Michael E. Greenberg¹

Histone H3K27ac separates active from poised enhancers and predicts developmental state

Menno P. Creyghton^{a,1}, Albert W. Cheng^{a,b,1}, G. Grant Welstead^a, Tristan Kooistra^{c,d}, Bryce W. Carey^{a,e}, Eveline J. Steine^{a,e}, Jacob Hanna^a, Michael A. Lodato^{a,e}, Garrett M. Frampton^{a,e}, Phillip A. Sharp^{d,e}, Laurie A. Boyer^e, Richard A. Young^{a,e}, and Rudolf Jaenisch^{a,e,2}

OPEN O ACCESS Freely available online

PLOS BIOLOGY

A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

Francesca De Santa^{1,9}, Iros Barozzi^{1,9}, Flore Mietton^{1,9}, Serena Ghisletti¹, Sara Polletti¹, Betsabeh Khoramian Tusi¹, Heiko Muller¹, Jiannis Ragoussis², Chia-Lin Wei³, Gioacchino Natoli¹*

LETTER

doi:10.1038/nature09692

A unique chromatin signature uncovers early developmental enhancers in humans

Alvaro Rada-Iglesias¹, Ruchi Bajpai¹, Tomek Swigut¹, Samantha A. Brugmann¹, Ryan A. Flynn¹ & Joanna Wysocka^{1,2}

Future Work: Organizing principles of the genome

 Use genome-wide data to develop systems biology type models of gene regulation

Topology is not sufficient for understanding function of gene regulatory networks

What are the dynamical properties of gene regulatory networks?

What is the role of noise in gene regulation?

How is information propagated in gene regulatory networks?

How can the input signals be inferred from observing the mRNA levels?

What are the limitations on control in gene regulatory networks?

What are different regulatory mechanisms optimized for?

How robust is the system with respect to parametric perturbations?

What is the biophysical basis of TF binding?

- X-ray structures
- ChIP-Seq binding

What is the impact of SNPs on TF binding?

ACCTGACATCAAACGTTTAA

What is the biophysical basis of DNA looping?

20 kb

Acknowledgements

- Gabriel Kreiman
- Jesse Gray
- Tae-Kyung Kim
- Athar Malik
- Michael Greenberg

Thank You

Stochastic models of gene expression

Transitions between stable states

Waddington, 1953

Enzymes piggyback on the polymerase

- What is the function of RNAPII at enhancers?
 - Increase rate of RNAPII recruitment
 - Possibly faster than diffusion limit
 - Faster rise-time
 - Reduced noise
- What is the function of eRNAs?
 - Noise
 - Transcription establishes histone modifications

CBP

H3K

H3K4Me3

- Transcript has function

Establishing H3K4me1 levels at enhancers

A PDE for histone levels

Histone methylation is not significantly changed, but histone acetylation is $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial t} = \kappa P(x,t) - \mu_x H - \mu_t H$ $H(x,t) = \frac{k\kappa}{\mu_x(\mu_x - \lambda)} (e^{-\lambda x} - e^{-\mu_x x}) \times e^{-\mu_t t}$

Identifying regions with larger than expected number of ChIP-Seq reads

False Detection Rate (FDR) determine threshold

Use False Detection Ratio (FDR) to correct for multiple hypotheses

- $Z_i =$ #ChIP reads #input reads in window *i*
- ~1 read/100 bp

- Assume #reads in window $P(k) = \lambda^k \exp(-\lambda)/k!$

• Difference between two Poisson random variables

•
$$Z_i \sim \text{Skellam}(z, \lambda_1, \lambda_2)$$

$$p(x) = e^{-(\lambda_1 + \lambda_2)} (\lambda_1 / \lambda_2)^{x/2} I_x (2\sqrt{\lambda_1 \lambda_2})$$

Millions of windows need to be tested

-FDR - expected fraction of false positives

CBP binds in an activity regulated manner to ~28,000 sites throughout the genome

Aligning CBP peaks to calculate H3K4me1 binding profiles

Aligning CBP peaks to calculate H3K4me1 and H3K4me3 binding profiles

Enhancers have high levels of H3K4me1 and low levels of H3K4me3

Intragenic enhancers

- ~7,000 enhancers overlapping introns
 - H3K4me1, but no
 H3K4me3

Intragenic enhancers are also transcribed

- ~7,000 enhancers overlapping introns
 - No signal detectable on sense strand
 - Significant anti-sense transcription

Number of reads can be predicted by binding energy

SRF 10² Reads, predicted 10¹ \times_{X} = 0.45656× X 10⁰ × × × 10^{-1} 10^{-1} 10⁰ -2 10¹ 10² 10 Reads, observed

RNAPII binds at activity-dependent enhancers

RNAPII levels are unchanged at the enhancer in the mutant before and after KCI

Transcription at the Fos and Arc enhancers

arc enhancer

No transcription at Arc enhancer in mutant

Estimating the production rate of eRNAs

$$\frac{dE}{dt} = kN - \frac{E}{\tau_E}$$
$$k = \frac{E^*}{N\tau_E} \sim \frac{10^3}{10^4 \times 10^{-1} \text{h}} = 1 \text{h}^{-1}$$

 $\frac{\text{Variance strong promoter}}{\text{Variance weak promoter with enhancers}} = \frac{\text{Var}[(1+Nc)k]}{\text{Var}[k] + N\text{Var}[ck]} = \frac{(1+Nc)^2 \text{Var}[k]}{(1+Nc^2) \text{Var}[k]} \sim N$

Parameters for the eRNA fit

$$\lambda = \frac{k_{drop} \, \mathrm{s}^{-1}}{k_{elong} \, \mathrm{bp}^{-1} \mathrm{s}^{-1}} \sim \frac{2 \times 10^{-2}}{20} \, \mathrm{bp}^{-1} = 10^{-3} \, \mathrm{bp}^{-1}$$

$$\tau_{decay} = \tau_{find} + \tau_{bp}L$$

$$H(x,t) = \frac{k\kappa}{\mu_x(\mu_x - \lambda)} (e^{-\lambda x} - e^{-\mu_x x}) \times e^{-\mu_t t}$$
$$E(x) = \sqrt{\frac{\pi}{2\lambda}} \frac{\gamma k}{\lambda} e^{-\delta^2/2\lambda - \lambda x^2/2} i \left[\operatorname{erf}\left(\frac{\delta i - \lambda i x}{\sqrt{2\pi}}\right) - \operatorname{erf}\left(\frac{\delta i}{\sqrt{2\lambda}}\right) \right]$$

How abundant are eRNAs compared to mRNAs?

- Identify all transcripts in the genome
 - Wavelet-based algorithm for *de novo* detection of transcribed regions accounts for 99.8% of reads
 - Annotated RNAs ~ 98.3%
 - eRNAs ~ 0.02%
 - 1 in 10,000 reads is an eRNA read
 - mRNAs ~100 times more abundant

polyA tail is added to messenger RNAs (mRNAs)

Transcription of mRNA at the fos locus

eRNAs are not polyadenylated

We identified ~12,000 activity-dependent enhancers throughout the genome

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
 - 8/8 tested activity-dependent enhancers were validated using a luciferase assay

A PDE for eRNA levels $\frac{\partial P}{\partial x} + \frac{\partial P}{\partial t} = k(x,t) - \lambda_x P - \lambda_t P$ $\frac{\partial E}{\partial x} + \frac{\partial E}{\partial t} = \gamma P(x, t) - \delta_x x E - \delta_t t$ 0.02 0.015 eRNA level 0.01 0.005 10^{20³⁰40⁵⁰} 0 0 500 1000 1500 2000 0 2500 time (min) CBP distance (bps)

Master Equation (**ME**) description $\frac{dP_j}{dt} = \sum_i W_{ij} P_i(t) - W_{ji} P_j(t)$

- P_j **Probability** of having j molecules W_{ij} **Transition rate** from i to j