Widespread transcription at activity-dependent neuronal enhancers

Martin Hemberg

Imperial College London December 12, 2011

Transcription factors (**TF**s) regulate gene expression by binding to the DNA

TFs recruit **RNAPII** for transcription

Promoter

TF binding is cell-type specific

External stimuli change synapses

Hubel & Wiesel, 1970's

Changes in synapses are driven by changes in gene expression

An experimental system for genome-wide study of activity dependent gene expression

neuronal activation via potassium chloride (KCI) depolarization

mouse cortical neurons

An experimental system for genome-wide study of activity dependent gene expression

Jesse Gray Tae-Kyung Kim Greenberg Lab

Chromatin immunoprecipitation and sequencing (**ChIP-Seq**) finds protein binding sites *in vivo*

Binding of **CBP** depends on activity at the fos promoter and flanking loci

e2

e3 * 🔨

e4

fos transcription start site (TSS)

Only ~3000 CBP peaks at promoters ~3,000

Promoter H3K4Me3

Enhancers are distal TF binding sites

- No universal _ sequence signature
- Marked by high levels of H3K4me1

ENCODE, 2007 Heintzman et al, 2007 Roh et al, 2005 Visel et al, 2009 Post-translational modifications of histone tails correlate with function

- H3K4Me1 open chromatin
- H3K4Me3 active genes

(ENCODE, 2007)

Distal CBP peaks have high levels of H3K4me1 and low levels of H3K4me3

Aligning CBP peaks to calculate binding profiles

Enhancers have high levels of H3K4me1 and low levels of H3K4me3

Criteria for identifying activity-dependent enhancers

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3

We identified 12k activity-dependent enhancers throughout the genome

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
 - ~5000 extragenic enhancers
 - ~7000 intragenic enhancers

8/8 tested activity-dependent enhancers were validated using a luciferase assay

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
 - -~5000 extragenic enhancers
 - ~7000 intragenic enhancers

Non-coding DNA serves as activityregulated enhancers

Is RNAPII recruited at enhancers?

Does RNAPII bind at enhancers?

RNAPII is recruited to CBP binding sites at the *fos* locus

What is the function of RNAPII at enhancers?

Before neuronal activation

After neuronal activation

- Does RNAPII bind at enhancers?
- Are transcripts produced at enhancers?

RNA-Seq reveals which parts of the genome are transcribed

(Wang et al, 2009)

polyA tail is added to messenger RNAs (mRNAs)

- Increases stability
- Allows transport out of nucleus

Transcription of mRNA at the fos locus

20 kb

Transcription of total RNA at the fos locus

Transcription at enhancers is activitydependent

Average profile of enhancer RNAs (eRNAs)

Properties of enhancer RNAs

- Inducible
 - Low expression
 - ~1.5 kb
- Bidirectional
- No polyA-tail
- Not protein-coding

Enhancers recruit RNAPII and produce transcripts, but does it depend on promoter?

Before neuronal activation

After neuronal activation

- Does RNAPII bind at enhancers?
 YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent?

eRNA induction is correlated with induction of nearby mRNAs

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter

7 kb

Enhancers bind RNAPII independently, does the transcription depend on the promoter?

Before neuronal activation

After neuronal activation

- Does RNAPII bind at enhancers? YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent? YES
- Is eRNA production independent?

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter but eRNA synthesis is not

arc enhancer

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter but eRNA synthesis is not

7 kb

Enhancers bind RNAPII independently, but the transcription is promoter-related

Before neuronal activation

After neuronal activation

- Does RNAPII bind at enhancers? YES
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent? YES
- Is eRNA production independent? NO

We have not yet been able to determine the function of eRNAs

Science is always wrong. It never solves a problem without creating ten more. -George Bernard Shaw

- Noise
- Establish histone marks
- Transcript has function

eRNAs have been found in other cell types

doi:10.1038/nature09033

ARTICLES

nature

Widespread transcription at neuronal activity-regulated enhancers

Tae-Kyung Kim¹*†, Martin Hemberg²*, Jesse M. Gray¹*, Allen M. Costa¹, Daniel M. Bear¹, Jing Wu³, David A. Harmin^{1,4}, Mike Laptewicz¹, Kellie Barbara-Haley⁵, Scott Kuersten⁶, Eirene Markenscoff-Papadimitriou¹†, Dietmar Kuhl⁷, Haruhiko Bito⁸, Paul F. Worley³, Gabriel Kreiman² & Michael E. Greenberg¹

Histone H3K27ac separates active from poised enhancers and predicts developmental state

Menno P. Creyghton^{a,1}, Albert W. Cheng^{a,b,1}, G. Grant Welstead^a, Tristan Kooistra^{c,d}, Bryce W. Carey^{a,e}, Eveline J. Steine^{a,e}, Jacob Hanna^a, Michael A. Lodato^{a,e}, Garrett M. Frampton^{a,e}, Phillip A. Sharp^{d,e}, Laurie A. Boyer^e, Richard A. Young^{a,e}, and Rudolf Jaenisch^{a,e,2}

OPEN O ACCESS Freely available online

PLOS BIOLOGY

A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

Francesca De Santa^{1,9}, Iros Barozzi^{1,9}, Flore Mietton^{1,9}, Serena Ghisletti¹, Sara Polletti¹, Betsabeh Khoramian Tusi¹, Heiko Muller¹, Jiannis Ragoussis², Chia-Lin Wei³, Gioacchino Natoli¹*

LETTER

doi:10.1038/nature09692

A unique chromatin signature uncovers early developmental enhancers in humans

Alvaro Rada-Iglesias¹, Ruchi Bajpai¹, Tomek Swigut¹, Samantha A. Brugmann¹, Ryan A. Flynn¹ & Joanna Wysocka^{1,2}

Future Work: Organizing principles of the genome

 Use genome-wide data to develop systems biology and biophysical type mathematical models of gene expression

Can biophysical models improve our understanding of TF binding and transcription?

 Use ChIP-Seq to test and compare biophysical models of TF binding

Can we develop a mathematical framework for parametric noise and robustness?

Molecular noise does not fit observations

dP(m)/dt = kP(m-1) + P(m+1) - (m+k)P(m)

Can we develop a mathematical framework for parametric noise and robustness?

- Molecular noise does not fit observations
- Incorporate parametric noise

What is the impact on the phenotype from gene expression noise?

- RNA-Seq for single cells
- Global view of noise in gene expression
 - Pathways
 - Proximity
 - Cell-types
 - Propagation

Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis

Fuchou Tang,^{1,3} Catalin Barbacioru,² Siqin Bao,¹ Caroline Lee,¹ Ellen Nordman,² Xiaohui Wang,² Kaiqin Lao,^{2,*} and M. Azim Surani^{1,*}

Acknowledgements

Gabriel Kreiman, Children's Hospital Boston

Wui Ip Enrique Tobis Michael Greenberg, **Harvard Medical School**

Tae-Kyung Kim

Jesse Gray

Allen Costa Daniel Bear David Harmin Mike Laptewicz Eirene Markenscoff-Papadimitriou

Molecular Genetics Core Children's Hospital Boston

Kellie Haley Josh Davis Hal Schneider

Life Technologies

Rob David Jingwei Ni Scott Kuersten Gina Costa Kevin McKernan

Harvard Medical School Biopolymer facility Kristin Waraska Robert Steen

Johns Hopkins Jing Wu, Paul Worley Lab

Thank You

Intragenic enhancers

- ~7,000 enhancers overlapping introns
 - H3K4me1, but no
 H3K4me3

(ENCODE, 2007)

How do eRNA levels relate to mRNA levels?

CBP binds in an activity regulated manner to ~28,000 sites throughout the genome

Intragenic enhancers are also transcribed

- ~7,000 enhancers overlapping introns
 - No signal detectable on sense strand
 - Significant anti-sense transcription

RNAPII is recruited at all enhancers

Conjectured order of events for eRNA

Aligning CBP peaks to calculate binding profiles

Aligning CBP peaks to calculate H3K4me1 binding profiles

Aligning CBP peaks to calculate H3K4me1 and H3K4me3 binding profiles

RNA-Seq reveals which parts of the genome are transcribed

- Fragment
- RNA \rightarrow cDNA
- 35 bp reads mapped to genome
 - Before and after KCI
 - Total RNA and polyA+

Chromatin immunoprecipitation and sequencing (**ChIP-Seq**) finds protein binding sites *in vivo*

- Fragment DNA
- Extract with antibody
- Sequence fragments
- Map to reference genome

RNAPII binds at activity-dependent enhancers

Identifying regions with larger than expected number of ChIP-Seq reads

False Detection Rate (FDR) determine threshold

Use False Detection Ratio (FDR) to correct for multiple hypotheses

- $Z_i =$ #ChIP reads #input reads in window *i*
- ~1 read/100 bp

- Assume #reads in window $P(k) = \lambda^k \exp(-\lambda)/k!$

Difference between two Poisson random variables

•
$$Z_i \sim \text{Skellam}(z, \lambda_1, \lambda_2)$$

$$p(x) = e^{-(\lambda_1 + \lambda_2)} (\lambda_1 / \lambda_2)^{x/2} I_x (2\sqrt{\lambda_1 \lambda_2})$$

Millions of windows need to be tested

-FDR - expected fraction of false positives

Can we learn more about enhancers by comparing their locations in multiple species?

- Conservation of the genomic context of enhancers
- Evolutionary trajectories of enhancers and promoters

What is the structure of non-coding RNAs?

- Many classes of novel RNAs
- Structure \rightarrow function
 - Structural motifs
 - Families of ncRNAs

.....ACGUCCAAAUUCCCUAGGCUCAAGGCAUUCGAUCGGGAUUAUA.....

