Probing the function of non-coding sequences in human and mouse using ChIP-seq and RNA-seq

Martin Hemberg

University of Michigan March 9, 2011

Most of the genome is **not** protein-coding 100 90 % non-coding DNA 80 20 20 20 20 30 20 10 Prokaryotes One-celled Plants Invertebrates Chordartes Vertebrates Human eukaryotes (Mattick, 2004)

Additional layers of regulation determine the function of the genome

- Cell-type specific
 - DNA methylation
 - Post-translational modification of histone tails
 - Transcription factor (TF) binding

Histone Histone tail (ENCODE, 2007) Chromosome

Activity dependent gene expression

- Sensory experience shapes wiring in the brain
 - Synapses and patterns of neuronal activity changed

Hubel & Wiesel, 1970's

An experimental system for genome-wide study of activity dependent gene expression

neurons

An experimental system for genome-wide study of activity dependent gene expression

Jesse Gray Tae-Kyung Kim Greenberg Lab Chromatin immunoprecipitation and sequencing (ChIP-Seq) finds TF binding sites *in vivo*

- Cross-link TF
- Fragment DNA

Chromatin immunoprecipitation and sequencing (ChIP-Seq) finds TF binding sites *in vivo*

- Cross-link TF
- Fragment DNA
- Extract with antibody
- Reverse crosslink
- Sequence fragments

Chromatin immunoprecipitation and sequencing (ChIP-Seq) finds TF binding sites *in vivo*

- Cross-link TF
- Fragment DNA
- Extract with antibody
- Reverse crosslink
- Sequence fragments
 - Before and after KCI stimulation
 - CREB, SRFCBP, RNAPII
 H3K4me3, H3K4me1
 - Input

CBP binding depends strongly on activity at the *fos* promoter and flanking loci

Identifying regions with larger than expected number of ChIP-Seq reads

- Assume both ChIP and input ~ Poisson(λ_{c})
 - -~1 read/100 bps
 - Sliding window of size 240 bps
- Z = #ChIP reads #Input reads ~ Skellam(λ_{i}, λ_{j})
- False Detection Ratio (FDR) determines cut-off

- Controls for expected number of false positives

CBP binds in an activity regulated manner to ~28,000 sites throughout the genome

Only ~3000 CBP peaks at promoters ~3,000

Promoter H3K4Me3

Enhancers are distal TF binding sites

- Various mechanisms for interaction with promoters suggested
- Marked by high levels of H3K4me1

ENCODE, 2007 Heintzman et al, 2007 Roh et al, 2005 Visel et al, 2009

Distal CBP peaks have high levels of H3K4me1 but not H3K4me3

Aligning CBP peaks to calculate average binding profiles

Most CBP peaks have high levels of H3K4me1 but not H3K4me3

Transcription start sites (TSSs) have high levels of H3K4me1 and H3K4me3

Identifying 5130 activity regulated enhancers

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
- >1 kb from annotated promoter

Identifying 5130 activity regulated enhancers

- CBP peak
- High levels of flanking H3K4me1
- Low levels of H3K4me3
- >1 kb from annotated promoter
 - 8/8 validated in luciferase assay
 - ~7000 intragenic enhancers

Properties of activity regulated enhancers

Does RNAPII bind at enhancers?

RNAPII is recruited to CBP binding sites at the *fos* locus

20 kb

RNAPII is recruited at all enhancers

Properties of activity regulated enhancers

- Does RNAPII bind at enhancers?
- Are transcripts produced at enhancers?

RNA-Seq reveals which parts of the genome are transcribed

- Fragment
- RNA \rightarrow cDNA
- 35 bp reads mapped to genome

(Wang et al, 2009)

RNA-Seq reveals which parts of the genome are transcribed

- Fragment
- RNA \rightarrow cDNA
- 35 bp reads mapped to genome
 - Before and after KCI
 - Total RNA and polyA+

mRNA levels are strongly induced at the fos locus

Transcription of enhancer RNA (eRNA) at the *fos* locus

20 kb

Transcription of enhancer RNA (eRNA) at the *fos* locus

Genome-wide profile of transcription at enhancers

- Low expression
- ~1.5 kb
- Bidirectional
- No polyA-tail
- Not protein-coding

Genome-wide profile of transcription at enhancers

Intragenic enhancers are also transcribed

- ~7,000 enhancers overlapping introns
 - No signal detectable on sense strand
 - Significant anti-sense transcription

How do eRNA levels relate to mRNA levels?

eRNA induction is correlated with induction of nearby mRNAs

induction index = $(KCI^+ - KCI^-)/(KCI^+ + KCI^-)$

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter

Knock-out experiment confirms that RNAPII recruitment is independent of the promoter but eRNA synthesis is not

KO KCI

Enhancers bind RNAPII independently, but the transcription is promoter-related

After neuronal activation

Does RNAPII bind at enhancers? YES

Before neuronal activation

- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent? YES
- Is eRNA production independent? NO

We have not yet been able to determine the function of eRNAs

Science is always wrong. It never solves a problem without creating ten more. -George Bernard Shaw

0.6

0.4

0.2

0.0

5

distance to CBP peak (kb)

0.005 Noise antisense sense eRNAs eRNAs Establish histone marks 0.004 H3K4Me1 **RNA** expression binding Transcript has function (right axis) 0.003 0.002 0.001

eRNAs have been found in other cell types

doi:10.1038/nature09033

ARTICLES

nature

Widespread transcription at neuronal activity-regulated enhancers

Tae-Kyung Kim¹*†, Martin Hemberg²*, Jesse M. Gray¹*, Allen M. Costa¹, Daniel M. Bear¹, Jing Wu³, David A. Harmin^{1,4}, Mike Laptewicz¹, Kellie Barbara-Haley⁵, Scott Kuersten⁶, Eirene Markenscoff-Papadimitriou¹†, Dietmar Kuhl⁷, Haruhiko Bito⁸, Paul F. Worley³, Gabriel Kreiman² & Michael E. Greenberg¹

Histone H3K27ac separates active from poised enhancers and predicts developmental state

Menno P. Creyghton^{a,1}, Albert W. Cheng^{a,b,1}, G. Grant Welstead^a, Tristan Kooistra^{c,d}, Bryce W. Carey^{a,e}, Eveline J. Steine^{a,e}, Jacob Hanna^a, Michael A. Lodato^{a,e}, Garrett M. Frampton^{a,e}, Phillip A. Sharp^{d,e}, Laurie A. Boyer^e, Richard A. Young^{a,e}, and Rudolf Jaenisch^{a,e,2}

OPEN O ACCESS Freely available online

PLOS BIOLOGY

A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers

Francesca De Santa^{1,9}, Iros Barozzi^{1,9}, Flore Mietton^{1,9}, Serena Ghisletti¹, Sara Polletti¹, Betsabeh Khoramian Tusi¹, Heiko Muller¹, Jiannis Ragoussis², Chia-Lin Wei³, Gioacchino Natoli¹*

LETTER

doi:10.1038/nature09692

A unique chromatin signature uncovers early developmental enhancers in humans

Alvaro Rada-Iglesias¹, Ruchi Bajpai¹, Tomek Swigut¹, Samantha A. Brugmann¹, Ryan A. Flynn¹ & Joanna Wysocka^{1,2}

Summary I:Identified ~12,000 activity regulated enhancers that are transcribed

- Histone modification and CBP binding
- Transcription induction correlated with nearby promoter

What is the function of conserved non-coding sequences?

Evolution at Two Levels in Humans and Chimpanzees

Their macromolecules are so alike that regulatory mutations may account for their biological differences.

Mary-Claire King and A. C. Wilson

What is the function of conserved non-coding sequences?

Evolution at Two Levels in Humans and Chimpanzees

Their macromolecules are so alike that regulatory mutations may account for their biological differences.

Mary-Claire King and A. C. Wilson

Large-Scale Transcriptional Activity in Chromosomes 21 and 22

Philipp Kapranov,¹ Simon E. Cawley,¹ Jorg Drenkow,¹ Stefan Bekiranov,¹ Robert L. Strausberg,² Stephen P. A. Fodor,¹ Thomas R. Gingeras^{1*}

OPEN aCCESS Freely available online

PLOS BIOLOGY

Most "Dark Matter" Transcripts Are Associated With Known Genes

Harm van Bakel¹, Corey Nislow^{1,2}, Benjamin J. Blencowe^{1,2}, Timothy R. Hughes^{1,2}*

1 Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada, 2 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

What drives the conservation of extragenic regions?

 Compare extragenic transcription and TF binding to conserved bases

What drives the conservation of extragenic regions?

- Compare extragenic transcription and TF binding to conserved bases
 - TF binding sites
 - Non-coding RNA
 exon or promoter

De novo identification of transcribed regions

Using Haar-wavelets to identify transcribed regions (HaTriC)

• Find where read-density changes abruptly

Using Haar-wavelets to identify transcribed regions (HaTriC)

- Find where read-density changes abruptly
 - Consider multiple length scales

Using Haar-wavelets to identify transcribed regions (HaTriC)

- Find where read-density changes abruptly
 - Consider multiple length scales

- Interleaving regions of high/low density
- Mask expressed regions and repeat

Most unannotated transcribed regions are found near annotated genes

 80% of active genes correctly identified

Most reads are found in annotated genes

- Genic
- Annotated ncRNA

3.87%

88.66%

Transcribed regions account for 99.54% of all reads

Genic	88.66%
 Annotated ncRNA 	3.87%
 Upstream anti-sense 	0.51%
 Anti-sense 	0.23%
 Novel 	5.28%
• eRNAs	0.04%
 Other regulatory factor binding sites 	0.96%

Other regulatory factor binding sites

There are many extragenic regions transcribed at very low levels

 Genic 	15,262
 Annotated ncRNA 	4,870
 Upstream anti-sense 	5,427
 Anti-sense 	1,289
 Novel 	251
• eRNAs	1,018

Other regulatory factor binding sites
 1,365

What drives the conservation of extragenic regions?

- Compare extragenic transcription and TF binding to conserved bases
 - TF binding sites
 - Non-coding RNA
 exon or promoter

About 80% of conserved bases are transcription factor binding sites

About 80% of conserved bases are transcription factor binding sites

Summary II: *De novo* identification of transcribed regions suggests that most conservation is due to TF binding

Future Work: Organizing principles of the genome

 Systems biology approach to develop biophysical models

What determines the level of 'epigenomic modifications' and how are they read out?

- How can histone modifications be read and written?
- What determines transcription factor binding?
- What determines the level of transcription?

What is the impact on the phenotype from gene expression noise?

- RNA-Seq for single cells
- Global view of noise in gene expression
 - Pathways
 - Proximity
 - Cell-types
 - Propagation

Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis

Fuchou Tang,^{1,3} Catalin Barbacioru,² Siqin Bao,¹ Caroline Lee,¹ Ellen Nordman,² Xiaohui Wang,² Kaiqin Lao,^{2,*} and M. Azim Surani^{1,*}

Is there a non-coding genetic code for determining the structure of RNAs?

.....ACGUCCAAAUUCCCUAGGCUCAAGGCAUUCGAUCGGGAUUAUA.....

Acknowledgements

Gabriel Kreiman, **Children's Hospital Boston** Wui Ip Enrique Tobis Michael Greenberg, **Harvard Medical School**

Tae-Kyung Kim

Jesse Gray

Allen Costa Daniel Bear David Harmin Mike Laptewicz Eirene Markenscoff-Papadimitriou

Molecular Genetics Core Children's Hospital Boston

Kellie Haley Josh Davis Hal Schneider

Life Technologies

Rob David Jingwei Ni Scott Kuersten Gina Costa Kevin McKernan

Harvard Medical School Biopolymer facility Kristin Waraska Robert Steen

Johns Hopkins Jing Wu, Paul Worley Lab

Thank You

Is there an epigenetic code to determine the cell-type specific function of the sequence?

Experimental validation of 8 enhancers using a luciferase assay

Experimental validation of 8 enhancers using a luciferase assay

Copy numbers for different categories

Non-coding sequences are important

- Conserved
 - ~60% of highly conserved are non-coding
- Regulatory
 - Enhancers: distal regulatory binding sites
 - ~1/2 million estimated for human and mouse
 - Insulators

Silencers

Vol 444|23 November 2006|doi:10.1038/nature05295

nature

LETTERS

In vivo enhancer analysis of human conserved non-coding sequences

Len A. Pennacchio^{1,2}, Nadav Ahituv², Alan M. Moses², Shyam Prabhakar², Marcelo A. Nobrega²†, Malak Shoukry², Simon Minovitsky², Inna Dubchak^{1,2}, Amy Holt², Keith D. Lewis², Ingrid Plajzer-Frick², Jennifer Akiyama², Sarah De Val⁴, Veena Afzal², Brian L. Black⁴, Olivier Couronne^{1,2}, Michael B. Eisen^{2,3}, Axel Visel² & Edward M. Rubin^{1,2}

Non-coding sequences are important

- Conserved
 - ~60% of highly conserved are non-coding
- Regulatory
 - Enhancers: distal regulatory binding sites
- Transcribed
 - Long non-coding RNAs (IncRNAs)
 - Most have unknown function Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs

John L. Rinn,¹ Michael Kertesz,^{3,5} Jordon K. Wang,^{1,5} Sharon L. Squazzo,⁴ Xiao Xu,¹ Samantha A. Brugmann,² L. Henry Goodnough,² Jill A. Helms,² Peggy J. Famham,⁴ Eran Segal,^{3,*} and Howard Y. Chang^{1,*}

Intragenic enhancers

 ~7,000 enhancers overlapping introns
 – Inducible CBP

Intragenic enhancers

- ~7,000 enhancers overlapping introns
 - H3K4me1, but no
 H3K4me3

Intragenic enhancers

- ~7,000 enhancers overlapping introns
 - Inducible RNAPII

Properties of activity regulated enhancers

- Does RNAPII bind at enhancers?
- Are transcripts produced at enhancers? YES
- Is RNAPII recruitment independent?

arc locus and enhancer

5 Kb

Optimizing the parameters

- Binning, minimum and maximum Haar-waveletlength
- FDR for choosing break-points and transcribed regions
 - Sweep parameter space and maximize the fraction of regions that have a H3K4me3 peak at their start
 - Running HaTriC on one chr takes only a few minutes

Most ncRNAs are not polyadenylated

mRNA much more abundant than eRNA

Subtract input to identify significant peaks

- $Z_i =$ #ChIP reads #input reads in window *i*
- ~1 read/100 bp

Assume ChIP and input Poisson distributed

- Z_i = #ChIP reads #input reads in window i
- ~1 read/100 bp
 - Assume #reads in window $P(k) = \lambda^k exp(-\lambda)/k!$
 - Difference between two Poisson random variables

•
$$Z_i \sim \text{Skellam}(z, \lambda_1, \lambda_2)$$

 $p(x) = e^{-(\lambda_1 + \lambda_2)} (\lambda_1 / \lambda_2)^{x/2} I_x (2\sqrt{\lambda_1 \lambda_2})$

Use False Detection Ratio (FDR) to correct for multiple hypotheses

- $Z_i =$ #ChIP reads #input reads in window *i*
- ~1 read/100 bp

- Assume #reads in window $P(k) = \lambda^k \exp(-\lambda)/k!$

Difference between two Poisson random variables

•
$$Z_i \sim \text{Skellam}(z, \lambda_1, \lambda_2)$$

$$p(x) = e^{-(\lambda_1 + \lambda_2)} (\lambda_1 / \lambda_2)^{x/2} I_x (2\sqrt{\lambda_1 \lambda_2})$$

Millions of windows need to be tested

-FDR - expected fraction of false positives

Haar-wavelet Transcript Calling (HaTriC) for *de novo* identification of transcribed regions Calculate_RNA_density_for_128_bp_bins do

find_breakpoints
calculate_region_densities
determine_cutoff_density
remove_transcribed_regions
while new_regions_found

The Haar-wavelet picks out regions with sharp changes in read density

 Break points correspond to sharp changes in read density

The Haar-wavelet can be scaled to analyze multiple length scales

 Break points correspond to sharp changes in read density

The coefficients with largest magnitude are selected as candidate break points

 Break points correspond to sharp changes in read density

$$h_L(n) = \frac{1}{\sqrt{2^{L+1}}} \left(\sum_{i=n}^{n+2^L-1} \log(1+r_i) - \sum_{n-1}^{i=n-2^L} \log(1+r_i) \right)$$

? ?- Select coefficients with highest magnitude 20 kb

> RNA-Seq (positive strand) Haar-wavelet coefficients

> > ╾┅╾╍┉╾╍

?

111

The density distribution for the regions determined by the break points is bimodal

- Average density between breakpoints
- Keep regions belonging to higher mode

Remove transcribed regions, iterate the process is until no new regions are found

 Allows us to find regions with lower expression levels

